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A P P L I C A T I O N  OF A H I G H - V I S C O S I T Y  L I Q U I D  TO A M O V I N G  BASE 

V. M. Shapovalov UDC 678.027:532.522 

Kochin [1] studied the static balance of a nonextensible heavy filament in the problem of the kite- 
balloon thread shape under the action of wind. Krylov [2] studied the problem of the balance conditions of a 
spherical mine in flow. Entov and Yarin [3] analyzed numerous physical phenomena typical of the dynamics 
of free jets and dropping-liquid films. One of the latest studies of dynamic phenomena in rectilinear jets was 
performed by Yarin [4]. The static balance of a bent jet of a high-viscosity liquid was analyzed for the first 
time by Entov et al. [5]. Shapovalov [6-8] studied the physical effects typical of such a flow. 

In the present paper, we study the effect of flow conditions on the kinematic parameters of a steady. 
gravitationally bent jet in the long-wave approximation. The steady-flow region was determined by numerical 
analysis of the linearized problem of jet perturbations. The results can be used to form films by "pouring" 
polymer melts [9] and solutions [10] on a moving base or a rotating roll. Furthermore, the flow considered is 
used in the technology of light-sensitive materials. To intensify these processes and increase the film quality 
(e.g., by eliminating the difference in longitudinal film thickness), it is necessary to understand the regularities 
in the flow of a gravitationally bent, strained jet. 

1. Fo rmula t ion  of t h e  P r o b l e m .  The stream lines and the coordinates system are shown in Fig. 1. 
A high-viscosity liquid jet is continuously squeezed out from the plane slot 1, the initial jet velocity being the 
same across the slot width. Below the forming device, the plane base 2 moves with a constant velocity vl in 
the horizontal direction (surface roughness and roll curvature are ignored). At the instant the jet touches the 
surface, the strains in the jet cease, and the liquid begins to move with a velocity vl. Air suction into the 
clearance between the liquid and the base [11] is ignored. 

The origin of the Cartesian coordinates is located at the center of the jet section at which the change 
in the velocity profile is completed. The x axis is horizontal, and the y axis is vertical. The x, y coordinates 
characterize the location of the median surface. The dot-and-dashed curve shows the median surface whose 
extent is designated by s. Bending occurs in the zy plane. The values x = l and y = - h  correspond to the 
point of "sticking" of the jet to the surface. The physical point of contact lies below half the finite thickness 
of the jet. The current section of the jet is of thickness 6 and width b, and the normal section of the jet at the 
beginning of the coordinate system is a rectangle with dimensions b0 and ~0. 

The jet liquid flow is studied using a quasi-one-dimensional description ignoring the inertial, capillary. 
and aerodynamic (air friction) forces, which are small in comparison with the viscous force. The jet thickness 
is small compared with its length, and, hence, the bending moment is insignificant. We consider the median 
surface of the jet as a one-dimensional material continuum (parameters are averaged over the jet thickness 
and width). In this case, we have the equations 

Ob~ Ob~v ~__~ ~__~ Oy Ox 
0---[- + c3s = 0, (b(~o'll cos ~) = 0, (b(~all sin ~2) = b~pg, ~ss = sin T, ~ss = cos ~. (1.1) 

The initial and boundary conditions for Eqs. (1.1) are 

t = 0 : 6  = . = . . ( s ) ,  y = z = 

t > 0 :  x = 0 ,  y = 0 ,  v = v 0 ,  T = T 0 ,  ~=80,  s = 0 ,  (1.2) 

t > O :  x = l ,  y = - h ,  v = v l ,  ~ = 0 ,  s = s + .  
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Here t is time, qo is the angle between the tangent to the jet trajectory and the horizontal, p is the liquid 
density, g is the acceleration of gravity, v is the velocity, ~20 is the initial angle, s+ is the total length of the 
unper turbed jet,  and v0 is the initial velocity. In the general case, the parameters v0, h, vl, s+, l, qa0, and 60 
can be functions of t ime. 

In system (1.1), the first equation is the continuity equation, the second and third equations are the 
projections of the m o m e n t u m  equation, and the forth and fifth equations are geometrical ratios. In the case 
of a round jet, it suffices to subst i tute  r r  2 (r is the jet radius) for b6 in (1.1). 

To close the problem, it is necessary to determine the stretching stresses. We assume that  the strain 
rates are insignificant, and the liquid properties can be described by the Newton law 0- = - p $  + 2r/d, where 
p is the isotropic pressure, 7/is viscosity, ~ is a metrical tensor, and a and d are the stress and strain-rate 
tensors. 

Let us designate the stress-tensor components  as a l l ,  0"22, and 0"33 (the subscript 1 indicates the tangent 
unit vector to the jet axis, the subscript 2 indicates the binormal unit  vector, and the subscript 3 indicates 
the normal unit  vector). If the air friction on the surface of a high-viscosity, dropping-liquid jet with long- 
wave disturbances is ignored, the stresses 0"21 and 0"31 in the jet are much smaller than  the axial stress a11: 
0-21 = O(~0"11) and 0"31 = O(~0"11), where e ~ 6o/s+ << 1. The small values of tangential  stresses indicate 
that  the flowing jet cross section remains plane under jet bending. Therefore, the parallelepiped that  can be 
mentally cut from a rectangular  jet bends with the jet and is extended along the jet  axis s, preserving a 
rectangular section. This pa t te rn  does not change with an increase in the disturbance ampl i tude  as long as 
the long-wave mot ion pa t te rn  is sustained and until jet sections of large curvature appear. The  latter occurs 
only at very high ampli tudes  of disturbances. 

For the flow of a plane jet applied to a moving surface, e.g., a rotating roll, a "widening" effect is 
observed: the jet width increases with decrease in the length of the flow zone. This effect results from the 
liquid friction on the surface [12]. Under uniaxial tension conditions 0"22 = 0"33 = 0 ,  the transverse strain of 
the liquid section is isotropic (the cross sections are geometrically similar). The  jet width does not change 
only when the external stress 0"22 = 0-11/2 is applied to the jet edges. Shapovalov and Tyabin [13] proposed 
simulating the effect of the jet friction on the roll surface by applying stretching stresses to the jet edges, i.e.. 
0-33 = 0 and 0-22 = r where ~/, is a coefficient that  depends on the flow-zone dimensions (0 ~< r ~< 0.5). 

In the general case, the rheodynamics of a plane jet is characterized by the ratios d u  = v ~ = dv/ds. 
d22 = v ' ( 2 r  1 ) / ( 2 -  ~b), d33 = v'(1 + ~b)/(~b- 2), p = 2r/v'(1 + ~b)/(~b- 2), and a l l  = 6 r / v ' / ( 2 -  ~b). According 
to [13], for s+ > b0, uniaxial flow is observed (r  = 0 and 0-11 = 371v'). Technological processes [9, 10] are 
characterized by relatively short jets (s+ << b0), and, hence, we assume that  0-11 = 4r/v ~, b = b0, and ~b = 0.5. 

2. S t e a d y  F low.  Under  steady-flow conditions (O/Ot = 0), the continuity equation reduces to the 
ratio v0~0 = v6. Choosing 6o, vo, h/vo, and h as scales for 6, v, t, and linear dimensions, respectively, we write 
problem (1.1) and (1.2) in dimensionless form as 

) ) ~ Y =  1, ~-~(~-~- cos~2 = 0 ,  d-~\ dg s in~  = R~, d.~ = s i n ~ ,  d.~ =cos~; ,  

X = 0 :  Y = 0 ,  V = I ,  ~ = q a 0 ,  ~ =  1, .~=0 ,  (2.1) 

X = L :  Y = - I ,  V = K ,  ~ = 0 ,  .~=~+.  
Let us introduce the dimensionless parameters 

= __ Vl pgh 2 tvo 
~ =  ~ V v g = - - ,  R = ~  r =  {X,Y,L,~,~+}={x,y, l ,s ,s+}/h.  (2.2) 

~o' v0' .0 47/v0' --if" 
According to the second equation in (2.1), the horizontal tension component  is constant along the jet 

length [(Y-ldV/dg)cos ~ = H, where Y = c o n s t  (Fig. 1)]. 
The solution of problem (2.1) is represented in parametric form: 

(1 - 1/V)R/H 2 = 0.5[T(~2) - T(~0)], T(~)  = tan qa sec r + In [sec ~ + tan ~], 
(2.3) 

XR / V d ~  YffR / V t a n ~ d ~ ;  gR / Vd~ 
H cos ~ cos q; H cos 2 

~0  ~0 ~o 
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For specified K and ~20, the constants R, H, L, and 4+ are determined from the relations 

2 ( K -  11 / Vsin~d~'~ 2 R = -~--~(~ ( -  ~os~-~ ] , 2R(K- 1)=  -H2KT(~o), 
~o 

(2.4) 
LR f Vd~ R / Vtan~d~, ~+R ] Vd~ 

= c o s y ,  = -  - 
~o ~o ~PO 

The results of the analysis of (2.4) are shown in Fig. 2 as curves of L versus R for K = 2, 4, 8, 16. 
and 32 (curves 1-5) [curve 6 is a bifurcation curve (see Sec. 3)]. The distance to the point of the jet contact 
with the roll surface increases as K increases and R decreases. The curve of L(R, K) is monotonic and has no 
extremes. The condition H > 0 is satisfied for K > 1. The region 2 ~< K ~< 256, -~r/12 t> r -?r/2 + 0.05. 
10 -3 ~< R ~< 103, and 0.2 ~ H ~< 2 was studied. 

Analysis of (2.3) shows that the axial-velocity distribution along the jet length depends greatly on R. 
Thus, for large R, intense stretching occurs in the initial "vertical" jet section, and for small R, it is observed 
at the end of the flow zone, in the vicinity of the contact point. 

For ~ = -~ ' /2,  the solution of the problem has an infinite discontinuity due to the cofactor sec ~ in 
Eqs. (2.3) and (2.4). Therefore, the region of steady jet configurations is limited by the sector -~r/2 < ~ < 0. 
Neglect of the bending moment in Eqs. (1.1) is apparently responsible for this limitation. 

3. N u m e r i c a l  S t u d y  of Stabili ty.  Upon stretching, e.g., in synthetic-fiber forming, a rectilinear jet 
becomes unsteady when the extension ratio reaches a critical value [3, 4]. In this case, periodic fluctuations of 
the jet radius, tension, and velocity arise. This phenomenon is called "stretching resonance." Steady isothermic 
flow is unsteady when the extension ratio exceeds the critical value equal to 20.22. The loss of stability results 
in the occurrence of a new cycle - -  excitation of self-oscillations. 

In a closed system, the oscillation intensity can spontaneously increase in the presence of an external- 
energy source. The jet receives energy from a translationally moving base. The occurrence of self-oscillations 
with an increasing amplitude is typical of systems with positive feedback. With any jet disturbance, the 
information on the variation in the outlet section returns to the flow zone as a stretching force that 
synchronously varies with time and is uniform over the jet length (the capillary and inertial forces are ignored). 
The stretching-force fluctuations modulate the dynamic processes in the jet. This activates oscillations whose 
period is close to the residence time of a liquid particle in the flow zone. 

The stretching force is proportional to the product of the cross-sectional area by the gradient of the 
outlet strain-rate. For a rectilinear jet of a viscous liquid, the strain-rate gradient is maximal at the suction 
point (an exponential distribution of the axial velocity). Any method of decreasing the rate gradient at the 
suction point (nonisothermicity and dilatancy) extends the steady-flow region. In the case of a bent jet, the 
additional degree of freedom changes the dynamic properties of the jet. 

Let us introduce small perturbations of thickness, velocity, slope, and vertical deviations: 

= ~.(~)[1 +~(r ,~)] ,  V = Y.(~)[1 +~(r ,~)] ,  (3.1) 
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= 9~,($) + 3,(w, $), Y = Y,(g) + ~(z, $), max (a,/3, 7, ~) << l. 

Here and below, the quantities corresponding to a steady flow are designated by an asterisk; the g axis is 
"frozen" in the unperturbed jet. 

For the moment r = 0, the unperturbed jet is described by the equations 

d~, R cos 2 ~, dV, _ HV, dY, = sin ~, ,  
$,V, = 1, dg - HV, ' d$ - cosqo,' d$ (3.2) 

$ = 0 :  ~ , = ~ , 0 ,  V , = I ,  Y , = 0 ,  $ = $ + :  ~ , = 0 ,  V , = K ,  Y , = - I .  
Considering simultaneously (1.I), (1.2), (2.2), (3.1), and (3.2) and linearizing them, we obtain the 

following equations for the deviations: 
O~ O~ 0/3 HV, 0"7 R cos 2 qo, 0/3 
O-'-~+V*~s+V*'~s =0'  BRc~ 05 + H 05 + T R s i n ~ * = 0 '  

(3.3) 
02/3 (Rcos3~. )0/3 0o, 0.~ R O~ 

sin~o*O-'g "T+ HV, + H t a n q o ,  ~ - ~ + H t a n ~ o , - 0 - ~ + H ~ - ~ + ~ - , - y = 0 ,  0--~=Tcos~,.  

The boundary conditions for the deviations (r > 0) are 

$ = 0 :  c ~ = / 3 = ~ = 0 ,  7 = 7 0 ,  0/3/05=/3~, $=.~+: / 3 = ~ = 0 .  (3.4) 
The perturbations are small (1~1 << 1 as g ---* $+). Therefore, we assume that the location of the point of 

contact of the jet with the solid surface does not change: X(r ,  $+) = L = const, where .~+ = const. Equations 
(1.1) are constructed on the basis of the momentless theory, and, hence, the conjugation conditions for the 
axes at the jet end points, 7(g = 0) = 7($ = .~+) = 0, are invalid here. 

Let us write the perturbations as {a,/3,7,~} = {A, B, C, E} exp (At), where A(.~), B(g), C(g), and 
E($) are the eigenfunctions of the problem and A is the eigenvalue. 

From simultaneous consideration of Eqs. (3.2)-(3.4), we obtain the following problem for the 

eigenfuncti~ A' = - B '  - AA/V,, C' = Rc~176 (B  cos~o, + c~176 B' + C sin~o,) 
HV, H ' 

B" - AH A +  Ccosqo, - B s i n ~ ,  = Ccos~o,, (3.5) 
V, cos ~, ~ 

$ = 0 :  A = B = E = O ,  C = C o ,  B t = B ~ ,  ~=.~+: B = E = 0 .  

Here the prime denotes derivative with respect to $. 
Since the eigenfunctions are determined with accuracy up to an arbitrary cofactor, without loss of 

generality we set B~ = 1. 
Problem (3.5) was analyzed numerically. The values of the functions V,($) and ~o,(g) were found on 

the discrete set of points by solving problem (3.2) (by the Runge-Kutta method). The parameters H, g+, and 
R for the specified K and ~,0 values were obtained from Eqs. (2.4) (by the Simpson method). 

Specifying arbitrarily A and Co, we solve the Cauchy problem (3.5) and determine the functions B(g+) 
and E(g+). When the specified value A coincides with the eigenvalue of the problem, the solution of the 
Canchy problem satisfies the conditions B(.~+) = E($+) = 0. The problem was solved by the Runge-Kutta 
method of the fourth order. The eigenvalue A that ensures satisfaction of the conditions at the suction point 
was determined in the complex plane (A = Ar + iAi) by iteration using the parabola method. 

From the eigenspectrum, we chose the least-by-modulus root that corresponded to one wavelength of 
the Re(B) and Re(E) disturbances for the entire jet. As a test, the small gravity deflection close to the flow 
of a rectilinear jet with an exponential distribution of the axial velocity was used. Thus, for ~,0 -- -~r/48. 
R = 2.1.10 -4, and g+ = 54.4, the loss of stability occurs for K = K ~ --- 20.27 as K increases; the frequency of 
neutral oscillations was A = +iAi = + i .  0.2578, where Ai = w~ (w0 is the frequency). The values obtained 
agree well with the results of [4] for a rectilinear jet: K ~ = 20.22 and Ai = +0.693 (in [4] the frequency scale 
vl/1 was used). 

As the gravitational parameter R increases, the critical extension ratio and eigenfrequency increase. 
in the region studied, the dependences K~ and Ai(R) increase monotonically. With an increase in R. 
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the designed scheme losses stability. The parameters at the boundary of the region studied are as follows: 
4.0 = -1.208, K ~ = 79.65, R = 17.22, g+ = 1.83, and hi = =t=18.9. 

Figure 2 shows the calculated dependence of the critical extension ratio on the gravitational parameter 
(curve 6), taking into account that the parameters R and K unambiguously characterize the flow. The 
bifurcation (neutral) curve 6 separates the steady-flow zone with Re(,~) < 0 from the unsteady-flow zone 
with Re ()~) > 0, in which self-excited oscillations of increasing amplitude arise. The steady-flow region lies to 
the left of and below the bifurcation curve 6. 

When in the technological process of applying a plane high-viscosity jet K < K ~ = 20.22, the flow 
is steady irrespective of the height h (the parameter R). In the forming of plane polymer films, the above 
parameters can vary as follows [10]: 0.1 < R < 2 and 10 < K ~< 50. Since K determines the film thickness 
and it is fixed in the technological process, the flow stability can be ensured by varying R. For example, let 
K = 32. According to Fig. 2, the curve 5 (K = 32) intersects the bifurcation curve 6 at the point R = 1.6. 
Consequently, under the condition R < 1.6 [relatively small distance between probe and base (h)], the flow is 
unsteady. An increase in h (so that R > 1.6) eliminates self-excited oscillations. 

Thus, the gravity bending of the jet increases its stability against the occurrence of self-excited 
oscillations. The growth in stability with increase in R (the distance between the probe and the base) is 
caused by the decrease in the stretching stresses at the outlet point due to the more intense flow in the initial 
section under the weight of the jet. The result obtained agrees with the data on the stabilizing effect of the 
weight of a vertical rectilinear jet flowing downward [14]. 
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